NanoVNA-V2 SAA2N utilisation avec un PC

Daniel FORTIER CEAF 5/10/2021 version 1.6

<u>1-Installation</u>

Taper : Site officiel Nano VNA V2 En haut à gauche: Francais Liste de gauche: Software download Dans NanoVNA-QT Telecharger le driver: pour votre PC Windows! Cliquer sur CypressDriverInstaller_1.exe

Attention! toujours dans **NanoVNA-QT** Telecharger le logiciel de la dernière version correspondant à votre configuration

Vna_qt_windows.zip

dernière version 20200507 7/2020 si vous êtes avec windows Ou mieux la version 20201013 12/2020 pour (4 pouces prises N sur le site de Zenith Antenne) Finir l'installation et créer un raccourci vers l'exécutable: vna_qt Consulter éventuellement !

Le user manual en anglais La notice en français de Zenith Antenne L'abaque de SMITH par Daniel FORTIER

2- Démarrage avec le PC

Allumer le VNA, le raccorder au PC en USB, lancer le logiciel vna_qt Onglet Device, cliquer sur \\.\COM4

L'écran du VNA devient noir et indique **USB MODE**, tout se gère désormais depuis le PC.

3- Réglage de la puissance de sortie du VNA

Onglet Device, régler Output Power:

- Pour tests sur antennes et filtres passifs, une puissance élevée 0/10dBm Procure une meilleure dynamique et immunité aux signaux extérieurs.
- Pour tests sur préamplis et amplis, ne pas dépasser la puissance max de Sortie de ceux-ci avant saturation -10 /-30 dBm.

NB: pour des gains >10dB, insérer en sortie du VNA un atténuateur équivalent au gain de l'équipement mesuré (on en tiendra compte!)

<u>4– Fréquences</u>

Onglet Device, choisir **Start et Stop fréquency** (résolution 10 KHZ) Puis le nombre de points de mesures Rappel : 50 à 200 points sur l'écran du VNA 50 à 1024 points avec utilisation d'un PC Valeur recommandée: 200 points ! NB: plus le nombre de points est élevé, meilleure est la résolution mais plus le temps de balayage s'allonge ainsi que la durée de calibration. 1 seconde environ pour 50 points 5 à 10 secondes pour 200 points

Recommandation importante:

Toujours choisir une gamme de fréquences la plus réduite possible pour avoir une résolution optimale !

5- Utilisation

A ce stade, le VNA serait capable de fonctionner mais faute de calibration, les niveaux en amplitude peuvent être faussés de 4 dB maximum...

6- Calibration

Si les paramètres de calibration n'apparaissent pas à droite du graphe, aller sur l'onglet **View** et cocher **Calibration**.

Important: sélectionner auparavant le Nb de points de mesure qui sera utilisé pendant les mesures

Calibration coché en haut à droite, En dessous de Calibration Type, sélectionner SOLT(TR), sur prise Tx gauche

- au bout du cordon TX qui aboutira à l'équipement à tester ! mettre le bouchon SHORT, taper sur Short, l'affichage s'éclaircit...
 Attendre (assez longtemps si >100 points de mesure!) Le bouton Short devient bleu, passer au stade suivant.
- mettre maintenant le bouchon OPEN, taper sur Open, l'affichage s'éclaircit...
 Attendre, le bouton Open devient bleu, passer au stade suivant.
- mettre ensuite le bouchon LOAD, taper sur Load, l'affichage s'éclaircit...
 Attendre, le bouton Load devient bleu, passer au stade suivant.

- Raccorder ensuite les deux prises Tx / Rx avec les cordons qui serviront au test, bouclés pour en éliminer l'influence! taper sur Thru, L'affichage s'éclaircit, Attendre... Le bouton Thru devient bleu, la calibration est terminée...
- Pour appliquer cette calibration, taper enfin sur Apply.

- IMPORTANT: Mettre cette calibration en mémoire.

Onglet calibration, faire Save as

Donner un nom à cette calibration pour la retrouver...

- Pour rappeler une calibration...

Onglet calibration, faire Load

Choisir la calibration intéressante !

Les 4 boutons Short à Thrue **bleutés** prouvent qu'elle est appliquée.

Une calibration reste valable longtemps, pour la vérifier: boucler

Tx/Rx et s'assurer que le niveau est à mieux que 0dB±01 dB

7- Interprétation

Habituellement, la courbe en rouge donne le gain et la bleue l'adaptation. Par défaut :

- l'affichage des niveaux est à 10dB/division mais modifiable.

- l'adaptation s'exprime en dB mais peut être en valeur ROS !

Pour cela, dérouler la fenêtre de droite bleue mag(S11) et sélectionner swr(S11)

Le curseur inférieur permet d'ajouter aux courbes un **marqueur** et le lire les valeurs de perte/gain ,adaptation correspondante et position sur le diagramme de SMITH. Si l'on clique sur +, on en obtient un autre (une dizaine possible). Ceci permet de repérer des points caractéristiques importants (bande passante, etc).

Ci-dessous, analyse d'un filtre UHF TNT centré sur 755.3 MHZ, On est calibré (4 boutons bleus), perte 1 dB, adaptation 22.9 dB.

Même analyse mais avec 2 marqueurs typiques avec une adaptation env 20 dB:

Contrôle du ROS d'une antenne radioamateur 144/146 MHZ (sur sortie Tx). Les 2 marqueurs sont positionnés pour un ROS < 1.5 Ce qui indique ici une bande idéale de 144.47 à 146.58 MHZ

Contrôle du ROS d'une antenne Radioamateur **Long fil** après Balun 1/9 sortie 50Ω entre 3 et 30 MHZ (sur sortie Tx).

Les 3 marqueurs sont positionnés pour vérifier des fréquences habituelles L'antenne est visiblement trop courte pour une utilisation en 3.5 MHZ...

Daniel FORTIER F1UCG

Utiliser le VNA pour déterminer le Coefficient de vélocité d'un coaxial

Ne pas raccorder au PC ! paramétrage sur le VNA ci-dessous:

Écran, display, trace, conserver les traces 2 violet (PHASE) et 3 vert (SMITH), back, back, stimulus, START 10 KHZ

On branche sur le port 1 un câble de longueur L_0	exemple RG58C/U: 2.00 m
On sait que la vitesse de la lumière est $C=300\ 000\ m/s$	
On a $F_{0 MHZ} = 300/L_0$	$F_0 = 300/2 = 150 \text{ MHZ}$
$t_{0ns} = 1000/F_{0 MHZ}$	$t_0 = 1000/150 = 6.6$ ns
Paramétrer sur le VNA stimulus:	
START 10 KHZ	10 KHZ
STOP : chercher à avoir la phase qui passe	
de 0° à 180° sur les 3/4 d'écran !	30 MHZ

Déplacer le marqueur 1 à 180° de phase(en bas) et lire la fréquence 23.4 MHZ (Le marqueur 1 se déplace à gauche du diagramme de SMITH)

 $\begin{array}{ll}t_{ns}{=}1000/F_{MHZ} & pour \ \lambda \\ & Soit \ pour \ \lambda \ /4\end{array}$

 $t_{ns} = 1000/23.4 = 42.74ns$ $t_x = 42.74/4 = 10.7ns$

Le coefficient de vélocité VF = $100 \text{ x} (t_0 / t_x)$

 $100 \text{ x} (t_0 / t_x) = 6.6/10.7 \rightarrow 61.6 \%$ NB: Le constructeur l'annonce à 66%

La différence est due à l'adaptateur N/BNC et aux 2 prises BNC !

Réponse impulsionnelle avec le VNA

Ne pas raccorder au PC !

Écran, display, trace, conserver trace 0 (jaune/niveau) et trace 03(violet/phase), back, format, more, linear, ecran, back, back, transform, low pass impulse, ecran, transform on, ecran, velocity factor (FV): exemple avec #8 m de RG213, taper 66 x1 Paramétrage de **stimulus:** écran, back, back, stimulus, START 50 KHZ, STOP choisir pour la distance maxi estimée en mètres: L_m avec $F_{MHZ} = (30/L_m) \times VF$

OP choisir pour la distance maxi estimee en metres: L_m avec F_{MHZ} = (30/L câble court→fréquence élevée

câble long→ fréquence basse

 $L_m=12m \text{ STOP}= 30/12 \text{ x } 66 = 165 \text{ arrondi à } 200 \text{ MHZ}$

Prendre toujours une valeur ronde supérieure...

Brancher le câble toujours non chargé en Port 1

Marqueur jaune au sommet, lire la longueur du câble: 7.62 m Cas n°1 d'un câble coaxial avec l'extrémité non chargée

Cas n°2 d'un câble coaxial avec l'extrémité sur court circuit

Dans ces deux cas, on lira la distance à un défaut par coupure ou court circuit !

Cas n°3 , exemple réaliste d'un câble coaxial de # 9m, extrémité non chargée: marqueur jaune au sommet, lire en haut à droite la longueur du câble: 8.87 m

Avec un défaut ROS #1.5 à 1.20m du début

Avec un défaut ROS #1.5 à 1.20m de l'extrémité:

Utilisation du VNA SAA2N comme générateur RF

Ne pas raccorder au PC ! paramétrage sur le VNA ci-dessous: Paramétrer sur le VNA **stimulus:**

CW FREQ

L'émission est un « signal carré », la modulation de quelques centaines de Hz L'amplitude est à -10 dBm, atténuer si nécessaire extérieurement...

La précision en fréquence est excellente , de l'ordre de 1×10^{-6}